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This paper presents a linear stability analysis of a rapidly sheared layer of granular 
material confined between two parallel solid plates. The form of the steady base-state 
solution depends on the nature of the interaction between the material and the 
bounding plates and three cases are considered, in which the boundaries act as sources 
or sinks of pseudo-thermal energy, or merely confine the material while leaving the 
velocity profile linear, as in unbounded shear. The stability analysis is conventional, 
though complicated, and the results are similar in all cases. For given physical 
properties of the particles and the bounding plates it is found that the condition of 
marginal stability depends only on the separation between the plates and the mean 
bulk density of the particulate material contained between them. The system is stable 
when the thickness of the layer is sufficiently small, but if the thickness is increased it 
becomes unstable, and initially the fastest growing mode is analogous to modes of the 
corresponding unbounded problem. However, with a further increase in thickness a 
new mode becomes dominant and this is of an unusual type, with no analogue in the 
case of unbounded shear. The growth rate of this mode passes through a maximum at 
a certain value of the thickness of the sheared layer, at which point it grows much faster 
than any mode that could be shared with the unbounded problem. The growth rate 
of the dominant mode also depends on the bulk density of the material, and is greatest 
when this is neither very large nor very small. 

1. Introduction 
Several years ago, in a computer simulation of plane shearing motion of an assembly 

of smooth inelastic disks, Hopkins & Louge (1991) observed the development of a 
dynamic structure consisting of an anisotropic distribution of clusters of increased 
particle concentration, indicating that the initially uniform random distribution of 
particles was unstable under shear. Since that time other simulations have 
demonstrated similar clustering tendencies (see, for example, Goldhirsch, Tan & 
Zanetti 1993), and these results raise the question of the stability of plane shear, 
regarded as a steady solution of macroscopic continuum equations of motion for a 
granular material, such as those formulated by Haff (1983), Jenkins & Savage (1983), 
Lun et al. (1984) and Jenkins (1987), and subsequently elaborated and generalized by 
a number of workers. An early investigation by Mello, Diamond & Levine (1991) of 
disturbance propagation about a plane shearing motion, based on the continuum 
equations derived from granular kinetic theory, bypassed the essentials of the stability 
problem by confining attention to disturbances with wave vectors in the direction of 
the vorticity. (However, these authors did briefly examine the stability problem for the 
more complicated Taylor-Couette flow.) Both McNamara (1 993) and Goldhirsch et LIZ. 
(1993), on the other hand, used the continuum equations to investigate the stability of 
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a uniform granular material during ‘cooling’ due to the loss of pseudo-thermal energy 
in inelastic collisions and McNamara also examined the stability of a granular material 
maintained at a steady state by a uniformly distributed source of pseudo-thermal 
energy. 

The first systematic attempt to investigate the stability of the solution of the 
continuum equations representing an infinite plane shearing motion was made by 
Savage (1992). When these equations are linearized about the base state, u, = (Ty ,  O,O), 
the coefficients of certain terms are found to be functions of y as a result of the 
dependence of uor on y ,  and this precludes the existence of simple harmonic wave 
solutions. Consequently, Savage adopted a procedure used by Moffat (1967) in which 
solutions of the linearized equations are sought in the form 

a(x ,y ,  t )  = a(t)exp[ik(t)-x], (1) 

where k(t) = [k,, k,] = [k l ,  k: - Ttk3 and a represents the vector of dependent 
variables, namely the volume fraction of solids, the two components of velocity, and 
the granular temperature. k: and k: are constant wavenumbers associated with the x- 
and y-directions, respectively, and (1) represents plane waves whose wavefronts rotate 
in conformity with the vorticity of the base-state flow field. (Modes of this type were 
originally introduced by W. Thomson, later Lord Kelvin, in a study of the stability of 
bounded plane shear for a Newtonian fluid (Thomson 1887), so they will be referred 
to as ‘ Kelvin modes’ in what follows.) With this substitution the linearized perturbation 
equations reduce to linear ordinary differential equations, with time-dependent 
coefficients, for the components of a(t). In the simpler case of a shearing Newtonian 
fluid Thomson (and Moffat) found explicit solutions of these equations but, as this was 
not possible for the corresponding but more complicated equations for granular 
materials, Savage replaced the time-dependent coefficients in the equations for a by 
constants, equal to their values at t = 0. The resulting equations then had solutions of 
the form (l), but with k(t) replaced by a constant wave vector k(O), and 
a = a(0) exp (ot). These satisfied the complete differential equations for a(t) exactly only 
at t = 0, and presumably approximated the solution of these equations for sufficiently 
small values of t .  Savage then classified the base state as stable if the real part of OJ was 
negative for all solutions of this type, and unstable if it was positive for any solution. 
The largest real part of o, which will be referred to as the initial growth rate, was also 
presented graphically as a function of k i ,  for various fixed values of k: and various base 
states. It was found that the base states examined were unstable, in the above sense, 
with the initial growth most rapid when the two components of the wavenumber vector 
were approximately equal. The initial growth rates were also found to be larger for 
intermediate values of the solids volume fraction, rather than very large or small 
values. 

Following a procedure mathematically identical with that of Savage, BabiC (1993) 
later presented a more extensive set of results, with the dependence of the initial growth 
rate on kl  and k; exhibited graphically as contour plots for fixed values of the solids 
volume fraction vo in the base state. BabiC also considered the effect of permitting the 
wave vector to have a non-vanishing component kz in the direction of the vorticity. 

A difficulty with the results of Savage and of BabiC is that the existence of small 
perturbations which grow initially does not, in itself, imply that the base state is 
unstable, in the conventional sense. Recalling the definitions of stability and asymptotic 
stability, in the sense of Lyapunov. a transient perturbation solution of the linearized 
equations which remains bounded for all t 2 0 cannot provide evidence of instability 
of the base state, since it remains a solution when multiplied by any scale factor. Thus, 
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it can be constrained to remain within any specific bounds, no matter how small, 
simply by scaling down the initial perturbation, and this meets the Lyapunov definition 
of stability. Furthermore if, in addition, it tends to zero as t tends to infinity, then it 
also meets the definition of asymptotic stability. The value of the initial rate of change 
or, indeed, the largest value attained by the transient (provided this remains bounded) 
is not related to the question of instability, in the Lyapunov sense. In the cases they 
identify as ‘unstable’ the solutions of Savage and of Babic increase without bound 
when t+ 03, but this is of no relevance, since they approximate the solution of the 
complete differential equations for a(t) only for small values oft. This was recognized 
by Babid, who qualified the presentation of his results in the following words : “in the 
subsequent presentation the disturbance growth will be referred to as ‘instability’, 
although the initial exponential growth does not imply exponential growth at all 
times ”. 

The relation of the Kelvin modes to the question of stability has subsequently been 
clarified significantly by the work of Schmid & Kytomaa (1994). These authors 
considered both the complete differential equations for a(t), with time-variable 
coefficients, and the form to which these are reduced by the above device of replacing 
the variable coefficients by constants equal to their initial values. They were able to 
calculate the following function of time : 

where (Ja/I denotes the norm of a, defined as the sum of the squares of its components. 
This function is then an envelope for the norms of all possible transient solutions, 
scaled so that their initial conditions have unit norm. In this way they were able to 
show that solutions of the differential equations with constant coefficients could have 
initial rates of increase considerably larger than those corresponding to the separate 
exponentially growing modes investigated by Savage and Babic, so the initial growth 
rates reported by these authors are not even a reliable guide to the short-time 
behaviour of small disturbances. Also illuminating are calculations of G(t) for 
solutions of the complete differential equations for a(t), whose coefficients have a 
quadratic dependence on time. Then it is found that G may increase rapidly for small 
values of t and attain a large maximum value for certain ranges of k: and k;. 
Nevertheless, when k: + 0 they are able to show that G(t) always tends to zero as 
t + 03. Thus, transient solutions of the Kelvin form (l), with k0, =i= 0, remain bounded 
for all t and tend to zero as t tends to infinity, so none of them represents instability, 
in the sense of Lyapunov. Unfortunately this does not imply the converse, that the base 
state is stable in the sense of Lyapunov, since there remain the Kelvin modes with 
ki. = 0, which we will return to below, and there may also be other solutions of the 
linearized equations of motion which are not of the Kelvin form. Schmid & Kytomaa 
also point out that the large amplification of initial conditions at some finite value of 
the time may be of concern, since it could trigger unstable behaviour associated with 
the nonlinearities of the equations of motion. Of course this could always be avoided 
by constraining the initial disturbances to be sufficiently small, but it indicates that the 
base state, even if formally stable in the sense of Lyapunov, might have a very 
circumscribed domain of attraction. Furthermore, even if no instability is triggered, the 
base state might be expected to be subject to significant fluctuations as a result of 
transient magnification of small random perturbations. 

For the Kelvin modes with ki = 0, and only for these, the differential equations 
satisfied by the components of a(t)  have constant coefficients, so the results obtained 
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FIGURE 1. Bounded plane shear flow. N denotes normal stress confining the plates. 
u ,  is the speed of the plates. 

by Savage, and by BabiC, are true solutions of the complete equations, valid for all 
times. The growth rates of these modes as a function of k i ,  as plotted by Savage (1992) 
for two different base states, appear to be less than or equal to zero. However, for a 
base-state solids volume fraction of 0.3, the computed growth rates are actually 
positive over a limited range of values of k:, though they are too small to be seen on 
the scale of the figures. (We are indebted to Professor Savage for providing us with his 
computed results, which are in agreement with independent calculations in the present 
work,) The existence of these exponentially growing modes is sufficient to establish that 
the corresponding base states are truly unstable, in the sense of Lyapunov. and the 
instability takes the form of alternating layers of higher and lower particle 
concentration oriented parallel to the planes of shear. (The corresponding growth 
rates, are, however, much slower than the largest initial growth rates for the rotating 
Kelvin modes with ki + 0.) We shall refer to these modes in what follows as layering 
modes. Examination of Babid’s growth rate contour plots reveals the same feature, for 
particles both in the form of spheres and two-dimensional disks. The ‘unstable’ 
domain enclosed by the ‘neutral stability’ contour includes an interval of the k: = 0 
axis containing the origin, and points on this interval (other than the origin itself) 
represents truly unstable behaviour in the Lyapunov sense though, as noted above, no 
such behaviour is found anywhere else in the (kz,ki)-plane. 

The above considerations are discussed clearly, and at some length, in Appendix A of 
the recent paper by McNamara (1993). However, McNamara invokes Schmid & 
Kytomaa’s result on the asymptotic decay of the Kelvin modes to conclude, 
incorrectly, that unbounded plane shear of a granular material is always linearly stable. 
The fallacy lies in failing to recognize that Schmid & Kytomaa’s result holds only for 
k ,  + 0. As pointed out above, there are cases where linearly unstable modes exist with 
k,  = 0, so the unbounded plane shear is linearly unstable. 

In the present paper we focus attention on the stability of a shearing layer of finite 
thickness, bounded by rigid impenetrable walls at y = f d / 2  (see figure 1). In 
hydrodynamic stability problems in general it is found that the presence of solid 
boundaries has a profound effect on the stability of the flow, and we shall show that 
this is also the case for this problem. First we note that the ambiguities associated with 
the Kelvin modes for k! 4= 0, discussed at some length above, are not of concern for 
the bounded problem, since these modes are incompatible with the requirement that 
the boundaries shall be everywhere impenetrable to the particles. Certain layering 
modes with k: = 0, on the other hand, are consistent with the condition of 
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impenetrability, and we shall see that they contribute part of the stability picture for 
the bounded problem. However, they are by no means the most significant part of this 
picture. We shall show that the strongest modes of unstable behaviour found for the 
bounded problem are of a new and unexpected type, with no analogue in the 
unbounded problem. Thus, the presence of the bounding walls induces a physically 
new type of behaviour. 

2. Governing equations 
Solutions for steady plane shearing of a granular material between parallel plates, 

valid in the 'rapid flow' regime, have been generated numerically by Johnson & 
Jackson (1987), using the form of equations proposed for this regime by Lun et al. 
(1984). To maintain consistency with this earlier work, and with more recent work on 
the stability of unbounded plane shear flow (Savage 1992; Babid 1993; Schmid & 
Kytomaa 1994), the same equations are adopted here, and will now be summarized for 
convenience. There are three equations, representing conservation of material, 
momentum and the pseudo-thermal energy associated with fluctuations of particle 
velocities about the mean, respectively. In the absence of gravity they take the form 

%j -+V.~u) at = 0, 

D u  
Dt 

p- = -v.a, (3) 

Here p is the bulk density of the material, given by p = p p  v, where v is the volume 
fraction of solids and pp the density of the solid material; u is the local value of the 
mean velocity; a is thc stress tensor, defined in the compressive sense; and T is the grain 
temperature, defined as ; ( u ' ~ > ,  where u' is the magnitude of the fluctuation about the 
local mean velocity; q is the flux vector of the pseudo-thermal energy, identified as the 
mean kinetic energy of the velocity fluctuations; and J denotes the rate of dissipation 
of this energy, per unit volume, as a consequence of the inelasticity of collisions between 
particles. D/Dt represents the material time derivative following the mean motion. 

In the absence of frictional contributions to the stress, following Lun et al. (1984), 
the following closures are adopted for t ~ ,  4 and J: 

= bT(1 +~Y,Iv~,)-~,uU,V*U]/  
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where S is the deviatoric part of the rate of deformation: 
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s = gvu + V U T )  - +v - U i .  

7 is related to the coefficient of restitution, ep,  for particle-particle collisions by 
7 = (1 + ep)/2,  while the two viscosity factors p and pb, and the thermal conductivity 
factor A, are given by 

5M( T/x)1/2 256~v’g,; A = 75M(T/x)lI2 
‘= 16d2 ; pb= 5n 87(41 -337)d2’ 

where M and d are the mass and diameter of a particle, respectively. For go, which is 
a function of v, we choose the form used by Johnson & Jackson (1987), namely 

1 

where v, denotes the solids volume fraction at closest packing, taken to be 0.65. The 
values of d, M and the dimensionless factor a used in the present work can be found 
from table 1. 

The granular material does not stick to the wall, so a boundary condition for the slip 
velocity at the wall must be found by equating the component of the traction on the 
wall in the direction of slip to the rate of transfer of momentum to the wall by particle 
impacts. This can be done either in terms of a specific model for the geometry of the 
wall surface (see, for example, Jenkins & Richman 1986), or in terms of parameters 
measuring the resiliency of the wall and its effectiveness in scattering incident particles 
diffusely. With the latter alternative it was shown by Johnson & Jackson (1987) that 
an appropriate boundary condition for the slip velocity is 

Here n is the unit normal to the wall, pointing into the granular material, u , ~  = Iu - u,I 
where u, is the velocity of the wall and u that of the granular material in contact with 
it, and t is a unit vector tangent to the wall, in the direction of the slip velocity. 4‘ is 
a ‘specularity factor’, which measures the fraction of the momentum of an incident 
particle in the direction of slip which is transmitted, on average, to the wall in a 
collision. Thus, 4‘ = 1 for a rough wall which scatters the incident particles with equal 
probability in all directions, while 4’ = 0 for a perfectly smooth wall where scattering 
is specular. 

A boundary condition is also needed for the grain temperature, and this is found by 
equating the flux of pseudo-thermal energy from the wall to the difference between the 
rate of generation by slip and the rate of dissipation due to the inelasticity of 
particle-wall collisions : 

where e, represents the coefficient of restitution for particle-wall collisions. 
An increasing number of publications describe a more formal derivation of 

boundary conditions, based on some specific model of the geometry of the surface of 
the bounding wall. This approach was pioneered in papers by Jenkins & Richman 
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Particle diametcr, d (m) 0.0018 

Particle-particle coefficient of restitution, e 

Parameter in equation (5 ) ,  CL 

Solid material density, p ,  (kg m-3) 2980 
0.8 
0.6 
1.6 

Specularity coefficient for wall collisions, $7 

TABLE 1 

(1986) and by Richman (1988). When the sizes of the particles and assumed asperities 
on the wall are both small compared with the macroscopic length scale of the problem, 
the boundary conditions proposed by these authors reduce to a form essentially the 
same as that proposed above. There are minor differences in numerical coefficients and 
in how specifically the form of the functional dependence on v is specified, but the most 
significant difference is that the work of Jenkins and Richman relates our specularity 
factor 4’ explicitly to the assumed geometry of the wall. Thus, results obtained with the 
above boundary conditions and those of Jenkins and Richman should correspond 
closely, provided the values of the specularity factor in our boundary conditions and 
the parameter H (which characterizes the wall geometry) in theirs are mutually 
consistent. 

In addition to studies based on the above boundary conditions, some calculations 
will also be performed for rather simpler conditions. To motivate these we note that 
the first term on the right-hand side of (9) represents the rate of generation of pseudo- 
thermal energy due to slip at the boundary, while the second term represents its rate 
of dissipation due to the inelasticity of collisions between particles and the boundary. 
If the value of e, is close to 1 the former term will dominate, and the boundary will 
behave as a source of pseudo-thermal energy; if eu, is small, on the other hand, the 
latter term dominates and the boundary behaves as an energy sink. Both types of 
boundary will be considered in what follows. The ‘thermal activity’ of the boundary 
can be suppressed altogether by setting us, = 0 and e,  = 1, when both the generation 
and dissipation terms vanish separately. Solutions can be generated with these two 
conditions replacing (8) and (9) as boundary conditions. Though they do not represent 
the conditions at any physically real solid boundary, they nevertheless provide a vital 
link between the problems of plane shear in layers of bounded and unbounded 
thickness since, with these conditions, the base state is a velocity field representing 
uniform shear, while the solids volume fraction and the granular temperature are 
independent of position, as in the unbounded problem. However, though the base state 
is now just a slice of finite thickness taken from the corresponding state of the 
unbounded problem, we shall see that the presence of the bounding walls still has a 
profound influence on the question of stability. We shall refer to the problem with this 
type of boundary conditions as the ‘adiabatic case’. 

3. Bounded plane shear 
Figure 1 shows the configuration to be studied - plane shear between infinite parallel 

plates ~ and illustrates some notation. Cartesian coordinates are set up with origin in 
the central plane, y-axis normal to the planes of shear, and x-axis parallel to the 
velocity. The upper plate moves to the right and the lower plate to the left, each with 
speed uJ2, and the plates are separated by a distancc A .  N denotes the normal force 
per unit area applied to each plate to resist the tendency of the granular material to 
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force them apart. For steady fully developed flow the y-component of velocity vanishes 
and, denoting the x-component by u, the above equations of motion reduce to the 
following form : 

where (10) and (11) are the x- and y-components of the momentum balance, 
respectively, while (1 2) represents the balance of pseudo-thermal energy. The boundary 
conditions at the lower plate, Y = -0.5, are 

C ? (14) 
f dv (1 -e i , ) f ,  T* $’A’Lf,(u* +0.5)2 

- 
dT* - = - T*A-+ 
d Y  h d Y  c 

and the corresponding conditions at the upper plate are 

du* - $’j8(u* -0.5) 
d Y - -  C 2 

dT* * f, dv (1 -ei,),& T* $’A”f,(u* -0.5)2 
C 

+ -- = - T  _-_ 
d Y  f3dY C 

Here (13) and (15) come from boundary condition (8), while (14) and (16) represent 
condition (9); f,-& are dimensionless functions of v, defined in table 2, and 
dimensionless variables have been introduced, as follows : 

U* = u / u l ;  T* = p p  TIN;  ( X ,  Y )  = ( ~ , y ) / d .  (17) 
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In addition, the equations contain two dimensionless groups, A and C defined by 

whose physical significance will be discussed below. The total mass M ,  of granular 
material per unit horizontal area is then given by 

1/2 

so the mean volume fraction of solid material, V, is given by the integral on the right- 
hand side of (19). Also, the ratio of the magnitudes of the shear and normal stresses 
is 

du* 
- S = ACf2 T*"" 
N d Y '  

Before presenting details of the solutions, some of their features can be deduced by 
inspection. This will also show the significance of the dimensionless groups introduced. 
Apart from the material properties $', e ,  and e p  (which appears through the factor 7 
in the functions fl to f 8 ) ,  the dimensionless variables v, u* and T* are determined, as 
functions of X and Y, by the values of the two parameters A and C. In particular, since 
C determines A ,  the mean volume fraction V is then determined through (19). 
Conversely, if vand d are specified, A and C are determined, and hence so are v(X,  Y ) ,  
u*(X, Y )  and T*(X, Y ) .  Then from (18), since A is determined, N cc u;. But (20) shows 
that the ratio S/Nis also determined, so it follows that S too must be proportional to 
u:. Finally, (17) shows that u K u1 and T cc N cc u:. All the constants of proportionality 
in these relations are, of course, determined when v and d / d  are specified. Thus A and 
C may be replaced by v and d / d  as equivalent dimensionless parameters, and these 
have the immediate physical meaning of the mean particle concentration and the 
dimensionless plate spacing. Note particularly that no additional group specifying the 
rate of shear, such as a Reynolds number, is needed. The reason for this will become 
clear, and will be discussed later. 

Solutions of the steady-state equations were generated numerically using the finite 
difference procedure described by Johnson & Jackson (1987), with values for the 
material properties specified in table 1. Two such solutions are shown in figure 2, each 
for V =  0.35 and A/d  = 89, but with different wall conditions. In one case e,, = 0.97, 
and the walls act as sources of pseudo-thermal energy; in a second e ,  = 0.5, and the 
walls act as sinks. A third solution is also shown corresponding to the adiabatic case 
e, = 1, u , ~  = 0, described above. An explicit solution for this case is easily found, 
namely 11 = const. = V, u* = Y and T* = A2C2f2(v)/j&v). As noted earlier, it simply 
represents a slice of thickness d taken from an infinite plane shear flow. 

The stability of these steady solutions to small perturbations will now be studied. If 
the motion of the material between the plates is no longer assumed to be steady the 
boundary conditions (13)-( 16) remain unchanged, provided that the plate separation 
is held constant, but the equations of motion must be replaced by the following set: 

2v a ( Y u * )  a(vv*) -+- +-- - 0, 
ar ax aY 
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+ f, ACT*'l2 [ (g + g)' + 4 ((=) au* 2 - (g) (!!) + (&)')I} 

Equation (21) is the continuity equation, which is satisfied trivially by the steady-state 
solution, (22) and (23) are the two components of the momentum equation, and (24) 
represents the balance of pseudo-thermal energy. The y-component of velocity now no 
longer vanishes, and its dimensionless value is denoted by v*, while a dimensionless 
time r is defined by r = tu,/d. 

These equations are then linearized in the usual way for small perturbations about 
the steady-state solution. Distinguishing the steady state by suffix zero, we explore 
perturbations of the following form: 

u* = uo ( Y )  -k u' where u' = u,( Y )  exp (f ir)  exp (iK, X ) ,  

v* = u' = u,( Y )  exp (Q7) exp (iK, X ) ,  

v = vo( Y )  + v' v' = v,( Y )  exp (Qr) exp (iK, X ) ,  

T* = T,( Y )  $. T' where T' = T,( Y )  exp (527) exp (i& X ) .  

where 

The result of these substitutions and the subsequent linearization 

(25) 

is a set of 
simultaneous ordinary differential equations for u,, v,, v, and T,, as functions of Y, with 
coefficients which depend on the base-state solution and are in principle, therefore, 
known functions of Y. The equations of motion and the process of linearization are, 
of course, the same as those used in the studies of the unbounded problem referred to 
above, though extra terms arise because the base states are, in general, no longer 
spatially uniform. However, the imposition of the boundary conditions (13k(16) 
constrains the perturbation modes to the form (25). The boundary conditions can 
similarly be translated into boundary conditions on u,, v,, ve and T,, and when these 
are joined with the above differential equations an eigenvalue problem for fi results. 
The coefficients in the differential equations and boundary conditions depend on the 
particular base-state solution and its spatial derivatives, and to speed up their 
calculation an interpolator representing the base state in an explicit algebraic form is 
needed. Because of the form of typical base states (see figure 2), except for the adiabatic 
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case no single polynomial provides an adequate fit over the whole width of the shear 
layer, and a piecewise polynomial approximation was therefore used. 

The eigenvalue problem for the differential equations satisfied by the modal 
variables is finally translated into a matrix eigenvalue problem by discretizing the 
equations using a finite difference approximation. Typically the interval [ - 0.5, 0.51 for 
Y is divided into 100 equal sub-intervals, and ue, u, and T, are evaluated at the 101 grid 
points (including the two boundaries). The volume fraction ver on the other hand, is 
evaluated at the mid-points of the sub-intervals, resulting in one less unknown for this 
variable in the matrix formulation. Explicitly detailed form of the above equations are 
too cumbersome to be reproduced here, but can be found in Wang (1995). 

The eigenvalues are computed using the software Mathernatica, for a sequence of 
values of the wavenumber K,. In what follows the eigenvalue with the largest real part. 
for a given value of K,, will be referred to as the leading eigenvalue for that value of 
K,. Among the leading eigenvalues, for all values of K,, the one with the largest value 
of 52, will then be referred to as the dominant eigenualue. This identifies a dominant 
eigenvalue for each point in the (F, d/d)-plane, and the sign of its real part determines 
the linear stability of the corresponding steady state. 

It is important to note that the full equations (21)-(24), describing unsteady motion, 
introduce no new dimensionless parameters in addition to A and C. Thus, the values 
of all the dimensionless variables for general unsteady solutions are also determined by 
specifying values for these two parameters or, equivalently, specifying the values of V 
and d / d .  In particular, the dimensionless growth rate 0, is determined, so the 
corresponding dimensional growth rate w, ( = 52, uJd) is proportional to the shear 
rate, with the factor of proportionality determined by the values of V and d / d .  It also 
follows that the condition of neutral stability, SZ, = 0, establishes a relation between L 
and d / d :  in other words there is a neutral stability curve in the ( j7 ,  d/d)-plane, and this 
is unaffected by the value of the rate of shear. The amount of growth of any perturbed 
variable a between t1 and t,, measured by In (a2/a,), is proportional to the amount of 
shear, ul(t, - t , ) /d .  

These features are counterintuitive to one familiar with stability problems of 
Newtonian fluids. Among other things they imply that no Reynolds number has a 
significant role in determining stability. Indeed, since the steady states in general have 
non-uniform particle concentration and grain temperature, both the bulk density and 
the effective viscosity vary widely over the region between the plates, and there is no 
unique way of defining a Reynolds number. For the adiabatic case alone these 
quantities are constant over the width of the layer in the steady state, and a unique 
Reynolds number can then be defined for each base state. However, the viscosity which 
appears in its denominator is proportional to T112 which is found, in turn, to be 
proportional to the rate of shear. Consequently the value of the Reynolds number is 
independent of the shear rate and, unlike the case of a Newtonian fluid, it does not 
provide a dimensionless measure of the velocity. This is the underlying reason for the 
conspicuous absence of the Reynolds number from most work on granular materials. 
Despite its lack of relevance there is no difficulty in calculating a Reynolds number for 
the adiabatic case, based on the layer thickness and the plate speed, and for the solution 
illustrated in figure 2, where F = 0.35 and d / d  = 89, its value is 2310. 

4. Results for the bounded shear layer 
Figure 3 shows a stability diagram in the plane of v and d / d ,  determined as just 

described, for the case e, = 0.5, when the walls act as energy sinks, and with other 
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FIGURE 3. Contour map of the dimensionless instability growth rate, Q,, in the (V, d/d)-plane. 
Parameter values as in table 1, with e ,  = 0.5 (energy sink at walls). Light curves correspond to the 
layering mode, heavy curves to the stationary mode. 
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FIG~JRE 4. Growth rate versus wavenumber K,, for the least-stable travelling wave modes and for the 

dominant stationary mode, at the point (v, d / d )  = (0.35, 89). Parameter values as for figure 3. 

parameter values as listed in table 1. Some contours of constant growth rate for the 
dominant eigenvalue are shown in the unstable region, labelled with the corresponding 
values of 52,; the limiting stability boundary is then the contour labelled zero. It is seen 
that the system is always stabilized at sufficiently large values of d / d ,  that is, when the 
plates are brought sufficiently close together. The range of instability is largest when 
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FIGURE 5. (a) Growth rates for the least-stable modes at very small values of K,. (6) Magnitude 
of the phase velocity for each of the modes shown in (a). Parameter values as for figure 3. 
(V,  d / d )  = (0.35, 89). 

v w  0.35, falling off quite quickly on both sides of this value. Within the region of 
instability two sets of contours of 52, are shown, distinguished by light and heavy lines. 
The larger part of the stability boundary is formed by the null contour of the first set 
but, at a value of v between 0.1 and 0.2, this is crossed by the null contour of the second 
set, which then becomes the stability boundary for smaller values of F, Evidently the 
two sets of contours represent dominant eigenvalues belonging to different branches. 
The growth rates for the first set are quite small, while those for the second set rapidly 
increase to much larger values on moving to the left from the null contour of that set. 
If 52, is regarded as a third dimension of the diagram, the eigenvalues of the first set 
form a gently rising hill, starting from ‘sea level’ at the null contour, while those of the 
second set form a steep escarpment which pushes up through this hill. 

We will now trace in detail the relation between these two sets of eigenvalues and 
examine the nature of the corresponding eigenfunctions. For this purpose we select one 
point of figure 3 ,  namely (V, d j d )  = (0.35, 89), which lies to the left of the null contour 
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FIGURE 6. Growth rates for the five least-stable modes in the interval 0 < K, < 0.5, illustrating the 
crossing of branches. Parameter values as for figure 3. (F, d / d )  = (0.35, 89). 

for the second set; its position is indicated by an open circle in figure 3. Then figure 4 
shows the real part of the leading eigenvalue, as a function of Kz, and it is apparent 
that at least two branches of eigenvalues are represented. For very small values of K,  the 
value of 52, is positive, indicating instability, but a much stronger instability is 
associated with eigenvalues from another branch, for which 52, assumes its largest 
value near K, = 0.95. This then identifies the dominant eigenvalue when 
( F ,  d / d )  = (0.35, 89). 

To understand what is happening in figure 4 the interval of K, shown must be split 
into sub-intervals and several of the branches of eigenvalues with the largest values of 
0, must be shown so that their relationship can be traced. Figure 5(a) shows a 
magnified view of the three branches of eigenvalues with the largest growth rates over 
a very short interval of K, adjacent to K, = 0. When K, > 0.002 the three distinct 
branches, labelled a, b and c, respectively, represent harmonic waves of the form (25), 
which travel in the x-direction with phase velocity -SZf/Kz and have wavefronts which 
are modulated in the y-direction. Each point on one of the above branches represents 
a pair of waves of this sort, propagating in the positive and negative x-directions, 
respectively, but otherwise identical. (This merely reflects the antisymmetry of the 
steady-state velocity field about the central plane; the two solutions are physically the 
same wave.) Their phase velocities are shown in figure 5(b) and for each branch it is 
seen that the velocity vanishes in some interval of K, adjacent to K, = 0. Within this 
interval figure 5 (a) shows that each branch splits into two parts, labelled a'. a" etc., and 
the eigenfunctions now represent stationary patterns of density and velocity variations, 
harmonic in the X-direction, whose amplitudes grow or decay exponentially depending 
on the sign of 52,. We shall refer to eigenfunctions of this type as stationary modes, in 
contrast with the travelling waue modes found for larger values of K,. (It should be 
noted that behaviour of the type just described is not peculiar to granular materials: 
a similar branching pattern was reported by Gallagher & Mercer (1962) who studied 
the stability of a plane shearing layer of a Newtonian fluid though, in that case, all the 
eigenvalues had negative real parts.) 
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FIGURE 7. Growth rates of the five least-stable modes in the interval 0.5 < K, < 1.2, illustrating the 
origin of the branch a* of stationary modes which contains the dominant eigenvalue. Parameter 
values as for figure 3. (v, A / d )  = (0.35, 89). 

Note that the branches shown in figure 5(a) cross each other in a rather complicated 
way so that the leading eigenvalue switches from branch to branch. When K, = 0 the 
leading eigenvalue belongs to branch a' and it is unstable. At K, NN 0,001 the a' and b 
branches cross, so branch b' becomes the leading eigenvalue. Further crossings then 
shift the leading eigenvalue successively to branches b and c as K,  increases. The 
picture is extended to a larger interval of K, in figure 6 where two more branches, 
labelled d and e, are added. The leading eigenvalue remains on the branch c throughout 
this interval, and it represents a travelling wave mode. However, except for a short 
interval adjacent to K, = 0 the real part of this eigenvalue is negative. Branch e, which 
is not one of the least-stable branches at K,  = 0, crosses all but branch c and therefore 
represents the second mode when K, > 0.29. 

The interval 0.5 < K,  < 1.2 is shown in figure 7, with each of the branches from 
figure 6 continued. As K, increases from 0.5 the leading eigenvalue initially belongs to 
branch c, while the eigenvalues of branch a lie in third position. However, at K, z 0.8 
the phase velocity of the waves from branch a falls to zero, and this branch splits into 
a new pair of branches, identified as a* and a**, which represent stationary modes. 
Branches a* and a** recombine at K, z 1.12, beyond which branch a continues and 
represents travelling wave modes once more. The largest value of 0, on branch a*, 
which is attained at K, = 0.95, is positive and is substantially larger than any other 
value of 52, encountered for K, < 1.2. We can now see that the prominent second 
branch represented on figure 4 is just this branch a*. 

A value K, = 1.2 represents a wavelength of approximately 470 particle diameters, 
so substantially larger values of K, remain physically significant. The eigenvalue 
computations were, therefore, extended to K, = 600, when the wavelength is 
comparable with the particle diameter. Beyond K, = 1.2 the leading eigenvalue was 
found to switch branches three more times, but it continued to representing travelling 
wave modes throughout, and its real part never again became positive. Thus, the peak 
of branch a*, at K, = 0.95, gives the dominant eigenvalue for this point in the (F, d/d ) -  
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FIGURE 8. Eigenfunctions of the fastest growing layering mode (K, = 0). (a) u, and zip,  

(b)  V,  and T,. Parameter values as for figure 3. (r, A / d )  = (0.35, 89). 

plane. (We did not investigate whether more structures like that of branches a* and a** 
in figure 7 occur anywhere in this extended interval of K, but, if they do, they never 
contain the leading eigenvalue.) The mode with the second largest growth rate for these 
values of (v, d / d )  is again a stationary mode, corresponding to branch a’ at K, = 0. 
For this mode there is no structure in the x-direction and the particles form plane layers 
of alternating higher and lower concentration, parallel to the planes of shear. 
Stationary modes of this type will be called layering modes. They are of interest 
because, as we shall see, they are related to the unstable modes of an unbounded shear 
flow. 

On decreasing the value of A the representative point moves to the right in figure 3 
and, correspondingly, the height of the peak of branch a* subsides until it is less than 
that of branch a’ (figure 5a) at K, = 0. The latter then takes over as the dominant 
eigenvalue, and in figure 3 the escarpment represented by the heavy contours drops 
below the hill represented by the light contours. 

We turn now to the nature of the eigenfunctions. For the layering modes (K,  = 0) 
these can be represented fully by plotting u,, u,, v, and as functions of Y,  and this is 
done in figure 8. It is seen that u, and z’, are odd functions of Y, with z’, much smaller 
than u,, while v, and T, are even functions. The grain temperature is largest at Y = 0 
and the two profiles oscillate out of phase, with the particle concentration high where 
the temperature is low. 

Stationary modes are found for small values of K, on branch a’, and also for larger 
values of K,  on branch a”. Figure 9 shows the particle volume fraction distribution 
corresponding to the stationary-mode eigenfunction from branch a’, figure 5 (a) ,  at 
K, = 0.0002. It is represented on a grey scale, with black corresponding to high density 
and contours drawn at equal incrernents of the volume fraction. There are seen to be 
alternating bands of higher and lower density, inclined roughly equally to the two axes, 
and within each band there is a row of five compact regions of increased, or decreased 
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FIGURE 9. Stationary-mode eigenfunction V(X,J,) (i.e. Re [v,( Y )  exp ( i 4  X ) ] )  at a point on the 
stationary mode branch a’, with K,  = 0.0002. Parameter values as for figure 3 .  (ij, d / d )  = (0.35, 89). 

density. However, this description is somewhat misleading as the abscissa has been 
scaled on twice the (very large) wavelength in the x-direction. This cotnpression of 
distance in the direction of shear is necessary for reasonably compact presentation, but 
the reader should understand that the picture must be stretched enormously in the x- 
direction to give a true sense of the inclination of the bands, which are quite near to 
the limit where they degenerate into laycrs parallel to the shear planes. The factor by 
which the abscissa must be changed to match the scale of the ordinate is shown 
explicitly on the diagram. 

The volume fraction distribution of the dominant stationary mode, belonging to 
branch a” at K ,  = 0.95, is shown in figure 10. using the same form of representation 
as in figure 9. There are, once again, alternating bands of high and low density inclined 
to match the direction of shear, but now within each band there are only three compact 
regions of increased or decreased density, with the two most pronounced occurring 
almost in contact with the bounding plates, while the third, which is much weaker, is 
located on the central plane. Again the picture is compressed in the x-direction, as 
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FIGURE 10. Dominant stationary-mode eigenfunction Y ( X , J I )  at K ,  = 0.95. Parameter values as for 
figure 3. (V .  d / d )  (0.35, 89). 

indicated, but much less so than figure 9. A realistic picture of the distribution of 
particle concentration is obtained by stretching the diagram about thirteen times in this 
direction. In both figures 9 and 10 it must be emphasized that the inclination of the 
bands is independent of the magnitude of the overall shear rate, though a reversal of 
the directions of motion of the plates would reverse the inclination. 

Though the stationary modes described above contain regions of enhanced particle 
concentration these do not resemble the clusters which have been observed in dynamic 
simulations, since they do not convect with the mean motion of the material but form 
a pattern that remains at rest in the frame of the central plane of the shearing layer. 
Structures analogous to the convected clusters are, however, seen in the leading 
travelling wave modes. Thus, figure 11 shows an instantaneous density distribution for 
the leading mode at K, = 0.7. Reference to figure 7 shows that this is a travelling wave, 
and its dimensionless phase velocity is 0.486. The distribution shown in figure 11 
corresponds to the wave travelling to the right with this velocity; rotation of the figure 
by 180" gives the density distribution for the second eigenfunction, which is a wave 
moving to the left with the same speed. The most prominent feature of figure 11 is a 
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FIGURE 1 I .  Leading travelling-wave eigenfunction v(x, y )  at K, = 0.7. Phase velocity = 0.486. 
(F, d / d )  = (0.35, 89). Parameter values as for figure 3. 

1 

row of clusters quite close to the upper bounding plate, and it is easy to check that the 
mean velocity of the base solution, at the position of their centres, matches closely the 
value of the phase velocity of the wave, quoted above. Thus, these clusters convect with 
the mean motion of the material. If the waves propagating in the opposite direction are 
superimposed a solution is obtained which consists of a row of clusters near each wall, 
propagating to the left and right, respectively, each with the mean velocity of the 
material in its neighbourhood. The region between them is occupied by a complicated, 
periodically varying concentration pattern. However, the analogy with the clusters seen 
in simulations should not be pressed too far. In order to see a faithful representation 
of the appearance of the density pattern the scale of the abscissa in figure 11 should be 
stretched about eighteen times, so the ‘clusters’ seen there are by no means as compact 
as they appear to be. Furthermore, though they belong to the leading mode at 
K,  = 0.7, the growth rate of this mode is negative, so they would not be expected to 
appear spontaneously. Indeed, the leading mode is an unstable travelling wave only for 
very small values of K, (see figure 5a) ,  so any convecting ‘clusters’ which might form 
spontaneously would be elongated enormously in the direction of shear. 
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FIGURE 12. Growth rate versus wavenumber, Kz,  for the leading modes at the point ( v ,  d / d )  = (0.35, 
89). Parameter values as in table 1 .  Results shown for three different values of e, to illustrate the effect 
of changing the boundary conditions. 

So far the discussion has been limited to one point in the parameter space, 
(v, d / d )  = (0.35,89), and to one particular boundary condition, e, = 0.5, where the 
walls act as sinks for the pseudo-thermal energy. We now examine the eEect of 
changing the boundary condition. Figure 12 is analogous to figure 4 but, in addition 
to the results for e, = 0.5 (which are simply a copy of figure 4), corresponding results 
are shown for the adiabatic case (eu, = 1 ,  uS1 = 0) and for a case with e ,  = 0.97, when 
the walls act as sources of pseudo-thermal energy. In each case the general picture is 
the same. The dominant eigenvalue is at the peak of a stationary-mode branch, and the 
position of this peak changes only between K, z 0.95 and K, z 1.0 as the boundary 
condition is changed. However, the height of the peak increases from L?? 5 0.006 to 
Qr = 0.024 on changing from the energy sink boundary condition, though the 
adiabatic case, to the energy source condition. The eigenfunctions for the dominant 
mode change very little when the boundary conditions are altered. The distribution of 
v for the dominant eigenfunction with the energy-sink boundary condition has already 
been shown in figure 10; the corresponding results for the adiabatic case and for the 
energy-source boundary condition are shown in figures 13 and 14, respectively. There 
is seen to be very little difference between the three cases. The only perceptible change 
is a slight movement of the most prominent regions of high and low density away from 
the walls on progressing from the sink case, through the adiabatic case, to the source 
case. 

Turning to the effect of' shifting the point in the (v, d/d)-plane, we have already 
pointed out that the dominant peak in figure 4 shrinks in height when d is decreased, 
eventually leaving the point on the highest branch at K, = 0 as the dominant 
eigenvalue, with a switch from a stationary mode, with structure in the x-direction, to 
layering as the dominant mode. To investigate the effect of varying d / d  over a wide 
range of values it is easiest to focus on the 'adiabatic' boundary conditions 
corresponding to eu, = 1, uSL = 0, since then the density is uniform and the velocity 
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FIGURE 13. Dominant stationary-mode eigenfunction v ( x , y )  at K, = 0.95. (p, A / d )  = (0.35, 89). 
Parameter values as for figure 10, except that wall boundary conditions are changed to e, = 1, u,! = 0, 
the adiabatic case. 

varies linearly within the sheared layer in the base state. This saves the time needed to 
construct adequately accurate piecewise polynomial representations of the base states 
for large plate separations. Then, with F fixed at 0.35, figure 15 shows the maximum 
value of 52, and the corresponding wavenumber K,, as functions of d/d .  The transition 
from the stationary mode with K, =k 0 to layering, with K, = 0, as the dominant mode 
occurs at a value of d / d  between 50 and 60, and it is marked by a discontinuous drop 
in the value of K,. For larger values of d / d  the dominant eigenvalue belongs to a 
stationary mode and, as dldincreases, Qr passes through a maximum near d / d  = 100 
then falls again for as long as the computations were continued. At the same time K, 
decreases monotonically and appears to be tending to zero as d / d  increases without 
bound . 

The eigenfunctions of the density distribution, for the four conditions labelled a, b, 
c and d in figure 15, are shown in the correspondingly labelled panels of figure 16 where, 
as before, the ordinate and abscissa are y / d  and x/2h,, respectively. When plotted in 
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FIGURE 14. Dominant stationary mode eigenfunction Y ( X , J )  at K, = 1.0. ( F ,  A / d )  = (0.35, 89). 
Parameter values as for figure 10, except that the value of e ,  is changed to 0.97, corresponding to an 
energy source at the walls. 

this way there are only minor changes in the eigenfunction as d / d  varies, but of course 
the true orientation of the inclined bands of highcr and lower density is seen only if the 
abscissa is replaced by x/d. For each panel of figure 16 the scale factors relating x/d 
to x/2h, are therefore given in the caption, and it is seen that the pattern of bands 
actually rotates toward a horizontal orientation as d / d  increases. At the same time the 
rate of growth of the instability decreases, so the dominant stationary mode 
approaches a weak layering type of instability at large values of d /d .  In summary, then, 
the stationary modc with structure in the x-direction is not dominant at small plate 
separations, but its rate of growth increases as the plates are moved apart, and it soon 
dominates the layering instability. With further increase in plate separation the rate of 
growth passes through a maximum, then decreases. At the same time the orientation 
of the bands of higher and lower density rotates toward the horizontal, and there is an 
indication that the stationary mode may degenerate asymptotically into a layering 
mode as the plate separation increases without bound. 
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FIGURE 15. Dependence of growth rate and wavenumber on plate separation for the dominant mode, 
with F = 0.35 and the boundary condition e, = 1, u , ~  = 0. Points labelled (a-d) correspond to the four 
panels of figure 16. 

With the energy-sink boundary condition, e,  = 0.5, our calculations were confined 
to smaller values of d / d  and, over the range covered, 0, was found to increase with 
increasing d / d .  However, had the calculations been extended to much larger plate 
separations, we suspect that the growth rate of the stationary mode would have passed 
through a maximum in the same way as described above. 

The effect of changing vfrom 0.35 to 0.24, with the same value for A ,  can be seen 
by comparing figure 17 with figure 12. When i i  is decreased the positions of the peaks 
of the dominant stationary modes shift to markedly smaller values of K,, by about the 
same amount for all three types of boundary condition, while the height of the peak 
is decreased for both the source and sink boundary conditions. The height changes very 
little for the adiabatic case. 

An important general conclusion is that the forms of the dominant branches of 
eigenvalues remain similar on moving around the (F,  d/d)-plane. The only major 
qualitative change in behaviour occurs when the height of the peak of the stationary 
mode branch falls below the highest intercept of a branch of eigenvalues with the axis 
K, = 0, and this triggers the switch to layering as the dominant mode of instability. 

Finally, it is important to recognize the role of the inelasticity of collisions between 
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FIGURE 16. Eigenfunctions v(x,y) for the conditions represented by the four points labelled (a-d) in 
figure 15. (a) x/A = 13.2 x/2h,, (b) x/A = 26.9 x/2h,, (c) x/A = 53.9 x/2h,, ( d )  x / A  = 109.3 x/2h,. 

particles in determining the nature of the dominant instability. Figure 18 reproduces 
the curves of figure 4, obtained with the sink boundary condition and ep = 0.8, and 
supplements them with corresponding results for the same boundary conditions, but 
with both a larger (0.9) and a smaller (0.7) value for ep.  When eB = 0.9 we found no 
dominant stationary mode with structure in the x-direction. The dominant mode is 
layering, with K, = 0, and even this mode grows most slowly with this choice for ep. 
When e p  = 0.7, on the other hand, the dominant stationary-mode peak is higher than 
in the base case, e p  = 0.8, and the layering mode also grows most quickly in this case, 
though it is by no means the dominant mode. These results indicate that the instability 
of the shear flow is a consequence of the inelasticity of particle-particle collisions; in 
particular, the strong stationary mode instability with structure in the x-direction 
appears only when the coefficient of restitution for these encounters is sufficiently 
small. 
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FIGURE 17. Effect on the leading modes of changing the value of V.  All conditions as for 
figure 12, with which the present figure should be compared, except that F = 0.24. 
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FIGURE 18. Effect on the leading modes of changing the value of ep.  (F, d / d )  = (0.35, 89). Parameter 
values as for figure 4, except that results are presented for three values of ep ,  as indicated on the figure. 

5. Unbounded plane shear 
As noted above, equations (2 lH24) and the linearized small-perturbation equations 

derived from them can of course be used to examine the stability of an unbounded 
plane shear flow (see Savage 1992; BabiC 1993; Schmid & Kytomaa 1993). Here we 
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FIGURE 19. Dimensionless growth rate versus X, for the problem of unbounded shearing motion, 
with various values of P, as indicated on the figure. Parameter values as in table 1. 

shall address just two aspects of the unbounded flow problem: first, its relation to the 
stability problem for the bounded layer and, second, the effect of relaxing the 
constraint to two dimensions and permitting structure to develop in the z-direction (i.e. 
the direction of the vorticity). 

As noted in the Introduction, among the perturbation modes that have been studied 
for the unbounded problem, only among those which are independent of x, and 
therefore represent 'layering' modes, can we find solutions which might be compatible 
with the boundary conditions of the bounded problem. A dimensionless growth rate 
Q, can be defined for these modes exactly as for the bounded case, using the shear rate 
of the base state as a scaling factor, and it depends on the volume fraction pin the base 
state and the wavenumber k,. The latter can no longer be scaled by the plate spacing, 
so instead we define a dimensionless wavenumber, scaled on the particle diameter, by 
X, = k,d. Then with ep  = 0.8 the computed relation between Q, and Xu, for various 
values of V, is shown in figure 19. It is seen that the base state is stable when V =  0.1 
and, indeed, for all smaller values of F, but for larger values the growth rate reaches 
a maximum positive value for some value of X,. This maximum growth rate is largest 
when F = 0.4, so here the granular material is least stable to this form of perturbation. 
(As noted in the Introduction, these results contradict the conclusion of McNamara 
that unbounded shear flow is always stable.) 

It is straightforward to extend this analysis to perturbations which do not depend on 
x but are allowed to depend on z, as well as y (see BabiC 1993) since the linearized 
perturbation equations then have constant coefficients, and their solutions are 
harmonic in both y and 2. The corresponding modes are again of the layering type, but 
now the layers are no longer normal to the y-axis; instead they are inclined so that 
their normal is in the direction of the vector (T,, .XJ in the (y, 2)-plane. The analogue 
of figure 19 is then a set of contour maps of 9, in the (Xu, %)-plane, one for each value 
of F. Figure 20 is such a diagram, but in each panel we have plotted only the neutral 
stability contour, Q7 = 0. For v 2 0.25 the dominant mode, which grows most rapidly 
has = 0 and therefore represents layering of the sort encountered previously, with 
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FIGURE 20. Domains of instability in the (q, %)-plane for unbounded shearing motion at various 
values of v, with disturbances permitted in the direction of the vorticity. U denotes unstable and S 
stable. 

the layers parallel to the (x, z)-planes. The base state becomes completely stable when 
V is reduced to 0.15. However, it becomes unstable again for still smaller values of F, 
but the orientation of the dominant layering instability has changed and the layers are 
now parallel to the (x,y)-plane, with normal in the direction of the vorticity. This 
curious behaviour appears to have escaped notice in the works on the unbounded 
problem referred to above. 

We turn now to the relation between the results for the unbounded shear flow and 
those for shear of a layer bounded by solid plates. This is best seen by focusing on the 
adiabatic case for the bounded shear layer. Then we expect the layering modes in the 
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FIGURE 21. Harmonic eigenfunctions v,(Y) for the adiabatic case at (F, d / d )  = (0.35, 89). Parameter 
values as for figure 3, except that wall boundary conditions are changed to e, = 1, u , ~  = 0, the 
adiabatic casc. (a), (b), (c)  and (d) represent successively higher harmonics. 

bounded problem to coincide with certain selected layering modes of the unbounded 
problem. This follows since bounded layers can be stacked, with the centreline velocity 
for the base state increased by an increment of u, for each successive layer and, as the 
number of layers assembled in this way increases without bound, a viable mode for the 
unbounded problem is generated. Not ail possible layering modes of the unbounded 
problem can be generated in this way, since Ky is constrained by the boundary 
conditions to take one of a discrete set of values in the bounded problem. 

These considerations are illustrated in figure 2 1, where the eigenfunctions ve( Y )  are 
plotted for the four most rapidly growing layering modes of the bounded problem with 
adiabatic boundary conditions and (F, d / d )  = (0.35, 89). Each of these modes is 
harmonic in Y,  and can therefore be characterized by a dimensionless wavenumber K,, 
which can in turn be re-scaled to match the scaling of the unbounded problem, writing 
Xy = K,d/d .  Then in figure 22 points (a), (b), (c) and (d)  represent (ar, Xy) for these 
four modes of the bounded problem, superimposed on the curve relating 0, to X, for 
the corresponding unbounded problem. The relation is plain. The small displacement 
of points (c) and (d) from the curve is merely a measure of the computational error in 
the algorithm for determining the eigenvalues of the bounded problem. 

The dominant stationary modes for the bounded problem, with structure in the x- 
direction, are not related in any such simple way to modes of the unbounded problem, 
even in the adiabatic case. Unlike the layering modes they cannot be stacked to 
generate a solution of the unbounded problem, since the whole pattern of particle 
concentration perturbations (see figure 13) is stationary relative to the material in the 
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FIGURE 22. Points corresponding to the conditions (a), (b), (c) and (d) of figure 21 superimposed 

on a plot of 52, versus .Xu for the corresponding problem of unbounded shearing motion. 

central plane. Consequently, if successive layers with centreline particle velocities 
incremented by u1 are stacked to generate an unbounded plane shear field in the base 
state, discontinuities are created in the phase velocity of the perturbation pattern at 
their junctions. Thus these modes, which dominate the behaviour of perturbations for 
the bounded problem over a wide region of its parameter space, have no analogue in 
the unbounded problem. 

6. Conclusions 
Bounded shear flow is found to be unstable only when collisions between the 

particles are sufficiently inelastic. For given particles, and bounding walls of given 
structure, the stability is determined by the values of two parameters, namely the mean 
volume concentration of the particles in the layer, and the ratio of the plate separation 
to the particle diameter. The rate of shear plays no part in locating the stability 
boundary, but for points not on that boundary the rate of growth or decay of 
perturbations is proportional to the rate of shear. The sheared layer is stable when it 
is sufficiently thin and becomes unstable as the thickness is increased to a value which 
depends on the mean particle concentration. 

The dominant instabilities take one of two forms : either relatively slow growing 
layers of alternating high and low particle concentration parallel to the planes of shear, 
or faster growing, more complicated stationary patterns with structure in the direction 
of flow. Though the former are closely related to corresponding instabilities of 
unbounded shear flow, the latter have no analogue in the unbounded problem. They 
consist of a pattern of three layers of regions of alternating higher and lower particle 
concentration, one on the centreplane and one near each wall, with the regions aligned 
in inclined bands of three. The direction of inclination conforms with the direction of 
shear, but the angle of inclination is unaffected by the rate of shear. If these patterns 
are plotted with the coordinate in the direction normal to the shear planes scaled by 
the thickness of the shear layer, and the coordinate in the direction of flow scaled by 
their wavelength in that direction, their geometry appears to be remarkably insensitive 
to the physical properties of the particles and the bounding walls, and to the thickness 
of the layer and the mean concentration of particles. Thus, they seem to owe their 
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existence merely to the presence of impenetrable walls bounding the shearing layer. It 
should be emphasized that they are not the same as the patterns of clusters of increased 
density seen in dynamic simulations of unbounded shear flow. The clusters seen in 
simulations convect with the shear field whereas these patterns are fixed in space, so the 
regions of increased density are in no sense clusters of identifiable particles; indeed, the 
particles are continually convected through regions of both high and low density. 

Clusters which convect with the material are seen in the present work. They occur 
in the leading mode when this is a travelling wave. However, they have negative growth 
rates except at very long wavelengths, when they grow slowly, but are elongated so 
much in the direction of shear that they bear little geometric resemblance to the clusters 
reported in simulations. However, it is possible that convecting clusters of shorter 
wavelength, though formally stable, might have large transient amplification as found 
by Schmid & Kytomaa (1994) for the case of unbounded shear. This could explain their 
appearance in simulations as transient phenomena triggered by a small random 
perturbations, rather than true instabilities. An extension of the analysis of Schmid & 
Kytomaa to the bounded shear layer would, therefore, be interesting. 

An investigation of the dynamic behaviour of bounded shear layers by direct 
dynamical simulation and comparison with the predictions of the continuum equations 
presented here. particularly those relating to the dominant stationary mode, might 
provide a valuable test of the validity of the approximations leading to the continuum 
equations. 

This work has been supported by the National Science Foundation under grant 
number CTS 92-07469. R.J. also thanks Trinity College, Cambridge, for an 
appointment as a Visiting Fellow Commoner, and the Department of Applied 
Mathematics and Theoretical Physics, Cambridge University for use of its facilities 
during the later stages of the work. 

REFERENCES 

BABIC, M. 1993 On the stability of rapid granular flows. J .  Fluid Mech. 254, 127-150. 
GALLAGHER, A. P. & MERCER, A. McD. 1962 On the behaviour of small disturbances in plane 

GOLDHIRSCH, I., TAN, M.-L. & ZANETTI, G. 1993 A molecular dynamical study of granular fluids 

HAFF, P. K. 1983 Grain flow as a fluid-mechanical phenomenon. J .  Fluid Mech. 134, 401430. 
HOPKINS, M. A. & LOUGE, M. Y. 1991 Inelastic microstructure in rapid granular flows of smooth 

disks. Phys. Fluids A 3, 47-57. 
JENKINS, J. T. 1987 Rapid flows of granular materials. In Non-Classical Continuum Mechanics, 

pp. 213-225. Cambridge University Press. 
JENKINS, J. T. & RICHMAN, M. W. 1986 Boundary conditions for plane flows of smooth, nearly 

elastic, circular disks. J .  Fluid Mech. 171, 53-69. 
JENKINS, J. T. & SAVAGE, S. B. 1983 A theory for the rapid flow of identical, smooth, nearly elastic, 

spherical particles. J. Fluid Mech. 130, 187-202. 
JOHNSON, P. C. & JACKSON, R. 1987 Frictional-collisional constitutive relations for granular 

materials, with application to plane shearing. J.  Fluid Mech. 176, 67-93. 
LUN, C. K. K.. SAVAGE, S. B., JEFFREY, D. J. & CHEPURNIY, N. 1984 Kinetic theories for granular 

flow; inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. 
Fluid Mech. 140, 223-256. 

MCNAMARA, S. 1993 Hydrodynamic modes of a uniform granular medium. Phys. Fluids A 5, 
3056-3070. 

Couette flow. J .  Fluid Mech. 13, 91-100. 

I :  the unforced granular gas in two dimensions. J. Sci. Comput. 8, 1 4 0 .  



62 

MELLO, T. M., DIAMOND, P. H. & LEVINE, H. 1991 Hydrodynamic modes of a granular shear 
flow. Phys. Fluids A 3,  2067-2075. 

MOFFATT, H. K. 1967 The interaction of turbulence with strong wind shear. In Atmospheric 
Turbulence and Radio Waw Propagation (ed. A. M. Yaglom & V. I. Tatarsky), pp. 135-156. 
Moscow: Nauka. 

RICHMAN, M. W. 1988 Boundary conditions based upon a modified Maxwellian velocity distribution 
for flows of identical, smooth, nearly elastic spheres. Acta Mechanica 75, 227-240. 

SAVAGE, S .  B. 1992 Instability of unbounded uniform granular shear flow. J.  Fluid Mech. 241, 

SCHMID, P. J.  & KYTOMAA, H. K. 1994 Transient and asymptotic stability of granular shear flow. J .  

THOMSON, W. 1887 Stability of fluid motion. Rectilineal motion of viscous fluid between two parallel 

WANG, C.-H. 1995 Instabilities in granular material flows. PhD dissertation, Princeton University. 

C.-H. Wang, R. Jackson and S .  Sundarrsan 

109- 1 23. 

Fluid Mech. 264, 255-275. 

planes. Phil. Mag. 24 (August), 188-196. 




